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Outline

Study on Process Scale-up Modeling: lab-scale model vs.
full-scale model for manufacturing

Study on Understanding Process Physics under Large
uncertainties

Summary: Integrated Nanomanufacturing and Nanoinformatics
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Scale-up Methodology [Xu et al., 2013]

C1. Scale-up process research: Identifying and developing NM processes
and processing techniques with the potential of economical production
at commercial scale, and

C2. Scale-up system-level research: Establishing modeling, simulation,
and control methodologies that enable and support economical
production at commercial scale: [Xu et al., 2013]

Quantity Size Throughput Yield
1 →N S → L S → F L → H

Objective from one to many from small to large
size or area

from slow to fast
processing rate

from low to high
quality

Nature of
problem

improve process
repeatability

scale size up increase produc-
tion rate

reduce defects

Measure of
outcome

large number of
units with low
variations

full-scale geome-
try at full-scale
system

short production
cycle

low fraction non-
conforming, low
defect rate

Methods variation reduc-
tion

dimensional analy-
sis

process design process & quality
control



1. Study on Process Scale-up Modeling

Engineering processes often are scale-dependent: lab-scale vs.
full-scale.

Predicting the full-scale process using the lab-scale model has the risk
of extrapolation.

Dilemma of scale-up process modeling:
how to avoid model extrapolation?
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Basic Idea: Transformation between Parameter Space and
Π-Space [Wang and Huang, 2013c] Π"Space(

XF:""Full&scale"
parameter"domain"

Parameter(Space(

XL:"Lab&scale"
parameter"
domain"

Model interpolation maintained in the Π-space

Extrapolation when transformed back to parameter space
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How to Accomplish the Transformation

The model in the transformed Π-space should preserve the similarity
between lab-scale and full-scale models.

The science base of achieving the scalability of engineering models is
the scaling law [Barenblatt, 2003].

The scaling law refers to the existence of a power-law relationship
between variables y and x through y ∝ xα .

The law signifies the property of an engineering phenomenon: physical
similarity, which is a generalization of the concept of geometric
similarity.
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Geometric Similarity and Transformation

The ration π = l1 : l2 : l3 is a transformation from parameter space
{l1, l2, l3} to Pi-space {π}.
Similarity will be preserved if the ratios are the same
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Physical Similarity and Transformation

The parameter space of an engineering process:
physical quantities (y , x1, x2, . . . , xp):

- Geometric parameters: e.g., diameter of MOCVD chamber

- Physical properties: e.g., density, viscosity

- Process parameters: e.g., flow rate, temperature

The Π-space of an engineering process:
- πi ’s: proper combinations of physical quantities ⇐⇒ length ratio

π = l1 : l2 : l3

- Two physical processes are complete similar if πL
i = πF

i ⇐⇒
l1 : l2 : l3 = l ′1 : l ′2 : l ′3.
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Dimensionless π numbers and Dimensional Analysis (DA)

πi ’s are derived through dimensional analysis (DA)
[Buckingham, 1914, Bridgman, 1922, Sedov, 1993, Taylor, 1974, Szirtes, 2007].

Essential idea: physical laws have the property of dimensional
homogeneity, i.e., additive terms in the functions will have the same
dimensions or units.

This property allows the number of arguments in the mathematical
expressions to be reduced, thus making them simpler to obtain either
from theories or experiments

Popular methods: Rayleigh’s method, Buckingham Π-theorem , matrix
method, and method of synthesis
[Rayleigh, 1915, Buckingham, 1914, Sharp, 1981, Zlokarnik, 1991].
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Related Work: DOA and Dimensional Analysis (DA)

Combining DA and statistical modeling of LP-CVD [Wehrle, 1989]

- Derived dimensionless groups governing LP-CVD
- Fitted polynomial regression models both for π = Φ(·) and the primitive process
variables.

Combining the DA and statistical DOE for a hydrodynamics
experiment on the thrust of a propeller [Islam and Lye, 2009]

- DA reduced 14 variables to 11 dimensionless numbers πi ’s
- A two-level fractional factorial design was used to screen out insignificant πi ’s
- Response surface modeling established a functional relationship between the
dependent dimensionless thrust coefficient and the remaining five significant πi ’s.

Statistician’s effort to combine DA and statistical DOE [Albrecht et al., 2013]

- Assumed a third-order regression model for π = Φ(·)
- D-optimal design proposed to experimentally investigate π = Φ(·)
- Robustness regarding missing physical quantities and optimization considered
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Engineering Design of Scale-up Experiments and Model
Building: Objective & Proposed Procedure [Wang and Huang, 2013c]

Objective: Identifying the scaling law and its physical domain
Proposed Procedure:
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Scale-up Engineering Experimental Design Example

Response FD : the drag force on a smooth sphere in a uniform fluid
Factors:

- R: Radius of the sphere
- v : Velocity of the sphere
- ρ: Density of the fluid
- µ: Dynamic viscosity of the fluid

True physical model from fluid dynamics [Schlichting and Gersten, 2000]

FD =
1
2
CD ρ v2 (πR2)

Drag coefficient CD : depending on Reynolds number Re = Rv ρ

µ
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Drag Coefficient CD vs. Re
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Not Knowing True Physical Model for Scale-up Experiment

Traditional Full Factorial Design: a full factorial 24 design

Table: Factor Levels for Factorial Design

Factor(Unit) Low High
Radius(Meter) 0.01 0.05

Velocity(Meter/Second) 0.005 0.01
Density(Kilogram/Cubic Meter) 500 1000

Viscosity(Pascal · Second) 0.0004 0.00089
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Full Factorial 24 Design: Log Transformation of Response
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Modeling Building in the Pi Space

log(
FD

ρ(Rv)2
) = β0 + β1log(

Rvρ

µ
) + ε (1)
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Sequential Engineering Design of Scale-up Experiments for
Exploring Multiple Physical Domains
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Sequential Engineering Design of Scale-up Experiments

Idea: concentrate more on the region where the relationship between
Re and CD changes.
Approach: Fit a series of simple functions gi in moving windows of k
observations, then we compare the consecutive gi and gi+1 and put
the new design point where gi+1 is most different from gi .
Measure: Use the L2-distance D =

√∫
(f −g)2 dx as a measure of

dissimilarity between gi .

Fore the series of gi , we choose second order polynomial function as it
requires only three data points in each window but still able to approximate
non-linear behaviors.
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Modified Sequential Design for Drag Experiment
Table: Second Quadratic Fittings and L2-Distance between g j

i [Wang and Huang, 2013c]

Window i a2
i b2

i c2
i Di

1 3.19 -0.855 0.0362 NA
2 3.20 -0.920 0.0513 0.163
3 2.55 -0.689 0.0328 52.1
4 -61.1 12.2 -0.596 1.37E4
5 237 -35.6 1.32 2.69E4
6 501 -76.9 2.93 3.52E4
7 52.2 -8.77 0.351 4.91E4

0 5 10

−
2

0
2

4
6

log(Re)

lo
g(

C
D
)

19 / 28



Study on Scale-up Process Modeling: Summary

Transformation through dimensional analysis is the key for scale-up
experiment and modeling building.

The sequential design supports the scale-up experiment well with
limited experimental efforts.

The design will be harder for high-dimensional Π space

Dimensional analysis for complex processes such as nano fabrication
processes is challenging.
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2. Study on Understanding Process Physics under Large
uncertainties [Huang, 2011b, Huang et al., 2011, Wang and Huang, 2013b,

Xu and Huang, 2012, Xu and Huang, 2013]

Large uncertainties involve in modeling nanomanufacturing processes:
- Uncertainties in physical understanding of process physics.

- Uncertainties in data collection: limited data, large variations among
experimental runs

- Dilemma of scale-up process modeling:
how to obtain credible understanding of process physics?
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Large Uncertainties: An Example in Nanowire Growth

A large pool of statistical models fit the data equally well
[Wang and Huang, 2013b].

●●

●
●

●●●

●
●

●

●●
●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Uncertainty Under 1050 Degrees

Time

R
es

po
ns

e

22 / 28



Large Uncertainties: An Example in Nanowire Growth

Models for different runs can be different as well due to large variations
among nano experimental runs [Wang and Huang, 2013a]:
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Cross-Domain Model Building and Validation (CDMV)

Cross-domain Modeling Physical 
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Uncertainty 
Modeling 

Physical Model Domain 

Statistical Model Domain 

Data Validation 
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Cross-Domain Model Building and Validation (CDMV)
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Cross-Domain Model Building and Validation (CDMV)

dW
dt

= γ1(W ∗−W ) + γ2W α (W ∗−W ) (2)
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- Identified the contributions of two growth mechanisms under each
growth condition (γ1 vs. γ2) [Wang and Huang, 2013b].

- Identified the changes of contributions under two growth conditions
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Summary

Scale-up Nanomanufacturing relies on informatics, more
important on the integration of nanoinformatics and
nanomanufacturing [Huang, 2011a]
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